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This paper formulates and solves a maritime surveillance problem
involving the allocation of multiple heterogeneous assets over a large
area of responsibility to detect multiple drug smugglers using hetero-
geneous types of transportation on the sea with varying contraband
weights. The asset allocation is based on a probability of activity sur-
face, which represents spatiotemporal target activity obtained by in-
tegrating intelligence data on drug smugglers’ whereabouts/waypoints
for contraband transportation, their behavior models, and meteoro-
logical and oceanographic information. A number of algorithmic con-
cepts based on branch-and-cut with limited search and approximate
dynamic programming (ADP) were investigated. We validate the pro-
posed algorithmic concepts via realistic mission scenarios. We con-
duct scalability analyses of the algorithms and conclude that effective

asset allocations can be obtained within seconds using rollout-based
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[. INTRODUCTION

A. Motivation

The illicit drug trade is an extremely profitable indus-
try and it is estimated that the consumers in the United
States alone spend as much as 150 billion USD per year
on black market drugs. Of this, it is estimated that 37
billion USD is spent on cocaine alone. It is a problem
of national, and increasingly international, concern [1],
[2]- This problem increased exponentially with the ad-
vent of narco-terrorism and the prospect of terrorists
using narcotics smuggling techniques to transport ter-
rorists or weapons of mass destruction into the country.
Given the reduction in the national resources allocated
to the counter-narcotics threat, it is of paramount impor-
tance that smarter and faster decision support tools that
integrate a wide variety of information are developed to
assist in this challenge of using less to accomplish more.
To do so requires effective hybrid human-machine
systems.

The U.S.Navy has shown a growing interest in mixed-
initiative human-machine systems and mastering infor-
mation dominance for effective context-driven opera-
tions [3]. To do so requires the transfer of the right data
from the right sources in the right context to the right
decision maker (DM) at the right time for the right
purpose—a concept known as 6R [4]. If a dynamically
developing operational context can be understood by
the DM, appropriate courses of action (COAs) can be
carried out, given the unfolding events. In the context
of maritime operations, DMs must assimilate informa-
tion from a multitude of sources before making deci-
sions on the strategy to be followed each day. If the DMs
are better informed about what to expect given the cur-
rently accessible data, as well as what they might expect
in the case of unforeseen events, effective decisions can
be made on the COAs.

Currently, much planning for narcotics seizures is
performed by humans interpreting large amounts of
data, including weather forecasts, intelligence, and re-
cently reported contacts of interest. Each day, the tar-
geting analysts must process and interpret all of these
data and agree upon a COA amounting to where lim-
ited detection aircraft and interdiction vessels should
be allocated to disrupt the maximum amount of ship-
ments over a multiday planning cycle. The consoli-
dation of large amounts of data and possible strate-
gies into a single asset allocation optimizer is benefi-
cial for both algorithmic purposes and human under-
standing. To support this transition to a human-machine
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collaborative mode of operation, we have developed an
optimization-based modeling framework and the as-
sociated decision support software tool for dynamic
surveillance and interdiction resource management in
counter-smuggling operations. This tool,named COAST
or Courses Of Action Simulation Tool [5], and the cor-
responding algorithms are intended to support targeting
analysts in identifying high-probability areas of smug-
gler presence and to proactively develop a set of high-
value COAs.

The counter-smuggling problem presented in this pa-
per is viewed as a moving horizon stochastic control
problem, as illustrated in Fig. 1, specifically from a strate-
gic operations standpoint, i.e., decision making with re-
gard to a schedule to follow for the upcoming time hori-
zon. Here, each block is an entity, such as a DM, sensor,
or asset, and the link from each block represents the out-
come of the block and its impact or influence on the next
block. The problem can be decomposed into surveillance
and interdiction asset allocation subproblems. This pa-
per focuses on the surveillance component, where DMs
(also termed targeteers) are responsible for allocating
multiple aircraft (namely, P-3 Orions (manned)) over
a finite time horizon in an effort to detect the trans-
portation of contraband. The interdiction component,
detailed in [6], involves the allocation of multiple het-
erogeneous surface assets (namely, Navy ships, Coast
Guard cutters), to disrupt multiple drug smugglers of
varying types, similar to that which is addressed in this
paper. The DMs in Fig. 1 choose which surveillance as-
sets to allocate to which target(s) (smugglers) based on
the target type and intelligence forecasting the target’s
trajectory (specified in the form of probability of activity
(PoA) surfaces [7], [8]). After allocated assets attempt
to search for potential targets, the mission environment
changes due to any target detection that may occur or
due to weather changes. These environment changes are
recorded by sensors and operators, processed, and sent
back to the DMs in the form of target types and tracks,
and are combined into an updated PoA surface, provid-
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ing a new forecast for the remainder of the planning time
horizon. The process then repeats. Ideally, the results of
this paper feed that of [6] for coordinated smuggler de-
tection and interdiction.

B. Related Research

The surveillance mission involves the search, detec-
tion, tracking, and identification of potential smugglers
within a large geographic region, which plays an essen-
tial role in the counter-smuggling operation. Airborne
surveillance assets (e.g., helicopters, maritime patrol
aircraft) are highly efficient at determining the sea sur-
face traffic information. However, in a real-world sce-
nario, there are typically a limited number of surveil-
lance assets and a large sea surface area that needs to be
surveilled. The study of how to most effectively employ
limited resources to locate an object, whose location is
not precisely known, falls under the rubric of search
theory.

The earliest foundations of search theory were built
by Koopman [9] to aid the U.S. Navy in efficiently lo-
cating enemy submarines during World War II, which
was further generalized in [10]. There are two major
categories of search theory: 1) the optimal allocation
of effort problem and 2) the best track problem [11].
For the optimal effort allocation problem, Blachman and
Proschan [12] derived an optimum search pattern for a
generalized problem of finding an object in one of the
n boxes. Pollock [13] introduced a Bayesian approach to
the optimal allocation problem, where allocation deci-
sions are made sequentially based on observations up
to the current time in order to minimize the expected
cost of searching to satisfy a specified probability of de-
tection (PD). Charnes and Cooper [14] applied convex
programming, along with the Kuhn-Tucker conditions,
for the optimum distribution of effort computation. In
this paper, we adopt Charnes and Cooper’s method to
compute the effort required for the optimal search in a
discretized map.

Z\" Observations
COAs Information
Processing

Surveillance

& Tracks

Fig. 1. The counter-smuggling problem viewed from a stochastic control standpoint. Targeteers (DMs) choose from a set of available
surveillance assets and finalize a search schedule to allocate the asset(s) over a near-time planning horizon, typically 72 h. Similar to the
planning/decision process presented in [6], [7], [32], and [40], after the action is carried out, information is gathered, processed, and fed back to
the targeteer.
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Stone [15] made use of the calculus of variations, con-
vexity properties, and generalized Lagrange multiplier
techniques to formulate a systematic treatment of search
theory. For the best track problem, Lukka [16] worked
out the theory of optimal search for stationary targets,
targets whose motion is known, and targets whose mo-
tion is almost known. The method relies on the theory
of optimal control. Mangel [17] extended Lukka’s algo-
rithms with the option of incorporating a detection rate
that is either independent of or dependent on velocity.

In recent years, the problem of drug surveillance has
been formulated from a variety of viewpoints. For exam-
ple, Washburn and Wood [18] formulated the surveil-
lance problem as a two-person zero-sum game and
Pfeiff [19] applied search theory to a defender—attacker
optimization model that maximizes the defender’s prob-
ability of success. Royset and Wood approach the
problem as a network flow problem, wherein an inter-
dictor must destroy a set of arcs on a network to mini-
mize both the interdiction cost and the maximum flow of
smugglers [20]. Jacobson et al. [21] formulate the prob-
lem as a multiple traveling salesman problem with the
objective of minimizing the overall search route cost
for multiple platforms that visit every search location.
Ng and Sancho [22] developed a dynamic programming
method to solve the surveillance problem. However, the
dynamic programming approach suffers from the curse
of dimensionality for large problems and, consequently,
near-optimal approximations are needed. A common
way to overcome this curse is by approaching the prob-
lem via approximate dynamic programming (ADP) with
policy iteration as in [23], where they frame the problem
in terms of stochastic control with partially observable
Markov decision processes. Kress et al. [24] examine a
discrete-time and discrete-space stochastic dynamic pro-
gramming approach to coordinate the efforts of a single
aerial search asset and a single surface interdiction as-
set. Other approaches, including the formulation of the
surveillance problem as a resource-dependent orienteer-
ing problem [25]-[27], wherein reward depends on the
resource expended at each visited node, have been in-
vestigated.

Optimal search problem formulations have become
versatile in their ability to account for multiple coop-
erating searchers, multiple targets with different char-
acteristics, and environmental effects on the search
[28]-[31]. For example, arc inspection is based on the in-
verse of the probabilities of detection as opposed to PoA
surfaces accounting for weather and intelligence in [7],
[8], and [32]. Byers [33] extended the network model-
ing approach to drug interdiction by including Bayesian
updating of the PoA surface. He considered a scenario
with one unmanned aerial vehicle and one ground-based
interceptor to interdict multiple targets with different
deadlines. Bessman [34] developed a defender—attacker
optimization model that uses the PoA surfaces as the
basis for asset allocation against smugglers. He formu-
lated a stochastic shortest path problem and represented

smuggler behavior as the output of an all-to-one label-
correcting temporal dependence instead of one-step de-
pendence. Three different sensor types (one interdiction
and two surveillance) are considered for allocation to
prosecute one type of target (among three possible). In
this defender—attacker model, smugglers are assumed to
have imperfect knowledge of possible sensor locations
and are given the ability to modify their behavior in re-
sponse to this information.

C. Paper Organization

Similar to Pietz and Royset [25], we also discretized
our maritime map. We adopt Charnes and Cooper’s
method [14] to compute the effort required for optimal
search in a discretized map. Our novel algorithmic con-
tributions are the following:

1) Fast one- and two-step lookahead ADP (1SLADP
and 2SLADP) algorithms for maritime surveillance
composed of heterogeneous assets and heteroge-
neous targets, each of which is carrying not necessar-
ily the same amount of contraband. Our algorithms
exploit the fusion of intelligence and weather infor-
mation available in the PoA surfaces.

2) We measure the utility of our approach by way
of comparison with more traditional branch-and-cut
(B&C) algorithms to solve the surveillance prob-
lems. We develop two variations of the ADP-based
surveillance asset allocation algorithms, wherein
real-world constraints on the assets (e.g., endurance
and rest time) are explicitly considered.

The paper is organized as follows. Section II de-
scribes the problem and the technical challenges ad-
dressed in the development of allocation algorithms un-
derlying our decision support tool. In Section III, we
discuss solution approaches, including exhaustive and
greedy B&C and ADP. In Section I'V, we present simula-
tion results as applied to a benchmark scenario that has
multiple targets, multiple surveillance assets, and param-
eters that have multiple levels of uncertainty. We addi-
tionally conduct and present results from our sensitivity
analysis relating to the scalability and performance of
our solution approaches in a realistic mission scenario.
We conclude the paper in Section V with a summary of
our findings and future work.

[I. PROBLEM MODEL AND FORMULATION

A. Problem Definition and Solution Architecture

The complete maritime surveillance and interdiction
problem is one of maritime drug trafficking disruption
in the East Pacific Ocean and the Caribbean Sea. The
general mission consists of two components: 1) surveil-
lance (the detection, tracking, and identification of con-
tacts of interest) and 2) interdiction (the interception,
investigation, and potential apprehension and repatri-
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Fig.2. Information flow and decisions (controls) in the

counter-smuggling problem. The decision support tool, COAST,
provides COAs to the JIATF-South Targeting Team who then modify
them as they see fit. The manually entered COAs can then be fed
back into the tool where the simulation is rerun providing new
outcomes to the targeting team, who can then provide further
feedback and modifications, if necessary.

ation of smugglers). In response to the need for infor-
mation fusion, we proposed a decision support system
(DSS) in [5], named COAST, to host and utilize algo-
rithms to provide auxiliary support to Joint Interagency
Task Force—South (JIATF-South) targeteers. We pro-
posed different forms of visualizations to enable DMs
to understand the behavior of our algorithms and the
presently evolving context, while also providing func-
tionality for human input and interaction in order to ef-
fectively integrate both humans and decision support al-
gorithms for mixed-initiative planning. The information
flow for the complete maritime interdiction problem is
illustrated in Fig. 2.

In COAST, we solve a moving horizon dynamic re-
source management problem for both surveillance and
interdiction operations based on user-defined mission
parameters. We then provide suggested COAs that the
DMs can interact with, adjust, and fine-tune to ana-
lyze various “what-if” scenarios and to obtain a satis-
factory allocation. Visual and computational analytics
are provided to communicate the reasons behind our al-
gorithm’s behavior. From Fig. 2, continuously updated
PoA surfaces (see Fig. 3 for an example), representing
the posterior probabilities of smugglers’ presence, con-
stitute the sufficient statistics for decision making [35]—
that is, COAST does not need to know how specific
Intel or meteorology and oceanography (METOC) fea-
tures, for example, uncertainty associated with a drug
trafficker, wave heights, currents, etc.,and how these two
inputs, along with asset and target models, are combined
to produce the PoA surface. A targeteer can fine-tune
the allocations, the resulting COAs are executed, and ob-
servations from surveillance and interdiction assets are
sent back to the reachback cell in the form of situational
reports or SITREPs (e.g., detections or nondetections)
that are used to update the PoAs. The targeteer can spec-

0.28
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Fig.3. PoA surface PoA(q, k, j) summed over all .

ify multiple objective functions. The objectives consid-
ered and analyzed in this paper are as follows:

O1: Maximize the normalized weight of the contraband
detected (normalized by the total possible amount
of contraband).

0O2: Maximize the normalized number of detections
(normalized by the total possible number of cases).

0O3: Maximize the normalized number of smugglers de-
tected (normalized by the total possible number of
smugglers).

Letoj and p; denote the expected contraband weight
and expected number of smugglers for case j. Let C
be the total number of cases (i.e., predicted smuggler
tracks) to be searched. Then, the normalized prior-
ity weights for objectives O1-O3, respectively, are as
follows:

A= =¢ ) )
Zg:l g
1
A==, 2
J C ( )
Pj
Aj C : 3)
D o1 Pg

B. Problem Formulation
The notation used in this paper is listed in Table 1.

1) PoA Surface: The foundation for each asset allo-
cation solution is the PoA surface over multiple time
epochs. The PoA surface is the result of combining
METOC information with actionable intelligence with
regard to uncertain smuggler departure point(s), depar-
ture times, waypoint(s), destination(s), and their behav-
ior on the ocean. The spatiotemporal probability surface,
PoA,is calculated as the joint probability of two discrete
random events: 1) the case j,with a corresponding binary
random variable C;,i.e., how trustworthy the intelligence
source is regarding a target, and 2) the target correspond-
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TABLE I
Summary of Notations

A Total number of surveillance assets
Aj Total area to be searched for case j
B;j Great Circle distance from the base of asset i to the

centroid of case j
C Total number of cases

CPoSD(i, j) Cumulative probability of successful detection for a
given asset 7 allocated to case j

dip Landing time for asset #’s £th flight

i Surveillance asset index

j Case index

k Time epoch index

K End of planning time horizon

L; Endurance of asset i

PoA(q, k, ) Likelihood that a smuggler belonging to case j is
located in a cell g at time k&

R; Downtime of asset i

Sie Remaining search time available within the current
sortie for asset i

Sij Sweep width of asset i searching for target j

tij Travel time for traversing the distance B;;

L Travel speed of asset i

v} Search speed of asset i

Wik Reward of allocating asset i to case j at time k

Xijk Binary decision variable of allocating asset i to case
j at time epoch k

Aj Priority weight of case j

Tip Departure time for asset i’s £th flight

y(i, ], 0) The set of search time indices for asset i assigned to

case j for the £th flight

ing to case j at a location g at time epoch k, with a cor-
responding binary random variable X (q, k, j),i.e.,given
that the case j exists, the probability that the target exists
at a location ¢ at time k. The probability surface PoA is
indexed by a location g, time k, and case j,and is defined

in (4)~(7):
PoA(q.k. /)= P(C;=1NX (q. k. j)=1) “)

=E{C;- X (q.k. ])} ®)
= Ec; {Cj - Ex(q.i.jyc; (X (q. K, J)ICj)} (6)

= > ¢-PCi=c)

¢j={0,1}

> h-P(X(q.k, j)=hiCj=c)].

h={0,1}
(7)

where we separate the expectation in (6) based on the
law of total expectation/iterated expectations.

We assume that P(C; = 1) = 1, that is, the intel-
ligence sources are always correct with 100% certainty.
Then, (7) reduces to

PoA(q, k, j) = P(X (g, k, j) =1). ®)

Therefore, PoA(q, k, j) is a number that refers to the
likelihood that a smuggler, belonging to case j,is located
in a cell g at time k. The PoA surfaces are computed as
detailed in [8] and represent all the relevant information
for effective asset allocation. The DM can specify how
many planning epochs to optimize over based on these
PoA surfaces and the objective function to be optimized.
A typical PoA surface PoA(q, k, j), summed over all &,
is shown in Fig. 3.

2) Optimal Search Effort Calculation: We assume
the optimum distribution of search effort is known based
on the model in [14]. Let p jx, denote the PoA of target
j in cell g at time k. We first rank the nonzero PoA cells
in decreasing order such that p jx1] > pjkp) > - - -, where
[«] denotes the «th largest nonzero PoA cell. Let the to-
tal available effort to be expended by asset i to search
case j be ®;;. A critical threshold is then calculated to
narrow the problem space and eliminate PoA cells not
worth searching, by first finding an » that satisfies the fol-
lowing inequality [14]:

n

Z v [ln Pikp] — In pjk[v+l]] > Dy )

v=1

Then, the critical probability, p;x, corresponding to the
search of case j by asset i at time k, is as in (10):

1 n
Pije =+ (Z v (In pjxpe) — In p o)) — CDij) 10)

v=1

+1n p jrfnr1)-

We then select all the cells corresponding to case
j that have a PoA greater than the critical probability
found in (10). This reduces the number of potential cells
that need to be searched for each case j by asset i. We
then compute the patrol box that maximally covers the
high-probability cells for each case. The allocation of as-
sets to patrol boxes is the subject of the optimization
problem discussed next.

3) Optimization Problem: The case regions are la-
beled by aggregating the PoA surfaces over a discrete
planning time period of length K (e.g., 72 h). Let us as-
sume a moving horizon frame of reference, where k = 0
corresponds to the current time period of unit length
(A =1h), k = 1 corresponds to the first planning pe-
riod, and k = K corresponds to the final period to be
planned for. Let A be the total number of surveillance
assets, C be the total number of cases, and ¢ € Q(j) be
the set of cells in the patrol box for case j as determined
by the optimal search effort calculation algorithm. The
size of the patrol box depends on the concept of opera-
tions and is assumed known. Let w;;; be the probability
of successful detection (PoSD), which is the product of
the PoA surface and the PD when asset i is assigned to
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search for case j at time k. That is,

wik = »_ PoA(q.k, j)PD(. j. k). (11)
q€0(j)
where
S;ikvS A
PD@Lk)=1—em<——%%—> 12)
J

is the probability that asset i detects case j during the kth
time epoch interval (PD(J, j, k) can only be collected at
the end of the kth time epoch interval). Let us assume
that each asset travels to the search region at a speed v}
and searches in the search region at a speed v;. The PD
equation is adopted from Koopman’s random search for-
mula [9], and offers a lower bound on the PD; advanced
models may be used in place of (12) as in [15]. Here, S;jx
is the sweep width of asset i searching for case j at time
epoch k, and A is the interepoch interval (=1 h in this
paper).

Let B;; represent the geodesic! distance that asset i
must traverse from its base to the centroid of case j. The
time it takes to traverse B;;, denoted by #;;, is given by

ij— | "4 |-
v

where [-] denotes the ceiling or rounding up to the near-
est integer. Let t;, denote the departure time if an asset
i is allocated to a case for flight ¢, and d;; as the land-
ing time upon its return from the corresponding search
box. The index ¢ increments with each flight that as-
set i is scheduled to fly over the planning time horizon.
Formally,

(13)

k,0 <k <K, ifiisassigned to a case during
the ¢ flight,
Tie = .
00, otherwise.

(14)
A similar definition applies to d;,. For each flight, the to-
tal search and travel time for each asset from its corre-
sponding base to each case must not exceed the asset’s
endurance, L; (in hours), and, upon flight completion, it
must rest for R; consecutive hours before it can be sched-
uled to depart for the next search box. The assets are as-
sumed to be manned aircraft with an associated rest time
for the pilot; additionally, each aircraft requires periodic
maintenance and refueling. The minimum time it may
take for an asset to become available again for search is
L;+ R;. Note that there is no feasible asset allocation for
a case j and asset i if 2¢;; > L;;i.e., the total round trip
travel time for a search region is greater than the max-
imum aloft time L;. With PoSD defined as in (11), the
cumulative probability of successful detection (CPoSD)

IThe geodesic distance is the shortest distance between two points on
the surface of a sphere.

for a given asset i is

K
CPoSD(i, j)=1— 1_[ (1 — wijexijic) »
k=1

(15)

where x; i is a binary decision variable such that x;;; =
1 if asset i is assigned to case j at time epoch k, and 0,
otherwise. The total reward that asset i can collect over
the planning time horizon is then

r = Z)\]CPOSD(IE )l
j

(16)

where A is the normalized priority weight of case j. We
wish to solve the following problem:

A
max J = max E Ti,

17
Xijk:Tie die Py ( )
sty xp <1 Vjk (18)
> xie <1 Vik, (19)
J
die — e < L;i Vi L, (20)
Tigr1 —die > R Vi, L, (21)
Tie, d,‘g S {0, ey K} U {OO} Vi, @, (22)
Xijk € {0, 1} . (23)

In (17), we assume that the surveillance asset cannot de-
tect targets while it is en route to the patrol box. Con-
straints (18) and (19) ensure that no more than one case
is allocated to an asset at one time. Constraint (20) indi-
cates that the maximum asset aloft time must not exceed
L;. Constraint (21) ensures that there must be a mini-
mum downtime of R; between asset allocations for a par-
ticular asset i and that subsequent allocations must have
a departure time later than the previous one(s), if any.
The problem posed in (17)—(23) is NP-hard [36].

[ll. SOLUTION APPROACH

A. Exhaustive Branch-and-Cut

The first solution approach we investigated is the ex-
haustive B&C method, herein referred to as E-B&C.
This method involves the enumeration and evaluation
of all feasible solutions and is illustrated in Fig. 4 with
respect to asset i, where each completed branch is a fea-
sible solution with the corresponding asset—case assign-
ments (i, j*), given the departure times 7;,, £ = 1,2,...,
for each flight of asset i. We enumerate a complete fea-
sible flight schedule over all flights for each asset i and
calculate the total reward r; for a given asset i using (15)
and (16). The schedule with the highest r; is selected to

8 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL.15,NO.1 JUNE 2020



i =01
T
Ti2 \

Fig.4. Branching method with t;; and 7, being the departure time
for the first and second flights and the corresponding case
assignments j; and j,. r; is evaluated using (15) and (16) for each
completed branch. The highest 7; is then saved as the best assignment
for asset i.

be the best assignment for asset i. In order to find the op-
timal allocation, we repeat the process mentioned earlier
with the full permutation of asset-case combinations.
The pseudocode is shown in Algorithm 1. In Algorithm
1’s pseudocode, line 1 generates the permutation of the
ordering of assets for which to start the allocation. Lines
2-5 compute the best assignment for the selected asset
i using B&C and updates the PoA surface accordingly
to avoid duplicate assignments (this is done by setting
the allocated grid cells in the PoA surface to have no re-
ward during the assigned search time(s)). Line 7 saves
all the assignment for each asset sequence generated by
the permutation function. Line 8 resets the PoA surface
to the originally initialized surface prior to any updates
in order to compute the next sequence generated by the
permutation function.

AvrcoritHM 1 Exhaustive Branch-and-Cut (E-B&C)

1: PermSeq = Perm(1, ..., A) > Permutation of
ordering of assets for which to start allocation
2: for each AssetSeq in PermSeq do
3: for eachi € AssetSeq do
4:  assign(i) = B&C(P)
5:  updatePoA(assign(i)) > Prevent overlap of patrol
box assignments
6: end for
7: Potential Assign < Potential Assign + assign > Save
potential assignment given we allocated in order
AssetSequence
8: resetPoA > Set PoA to originally initialized surface
prior to any updates
9: end for
10: BestAssign = MaxReward(Potential Assign) > For
all potential assignments found, search and find that
which resulted in the maximum reward

B. Greedy Branch-and-Cut |

Similar to E-B&C, we repeat the asset allocation pro-
cess for all the available assets and fix the assignment
for an asset i* with the highest r;. After the asset—case—

time epoch assignment is fixed, we update the PoA sur-
face to ensure that the assigned cases are no longer avail-
able for additional scheduling during the assigned search
hours. The same process is then repeated until either no
more assets are available or all cases are fully allocated.
We refer to this method as GB&C-I. The pseudocode is
shown in Algorithm 2. In this pseudocode, line 1 states
that while there are any unassigned assets, continue on to
lines 27, where the best assignment for each unassigned
asset is found using B&C. The best asset assignment is
then selected in line 8 (i.e., i* becomes known among
the explored potential assignments). In lines 9-11, the
PoA surface is updated given the asset assignment
found.

ALGORITHM 2 Greedy Branch-and-Cut I (GB&C-I)

1: while length(AssignedAsset) < A do
2: assign=4

3: foreachic{l,..., A}l do
4 if i ¢ AssignedAsset then
5 assign(i) = B&C(i)
6 end if

7: end for

8: assignment(i*) = MaxReward(assign)

9: AssignedAsset < AssignedAsset + i*

10: BestAssign < BestAssign + assignment(i*)
11: updatePoA (assignment(i*))

12: end while

C. Greedy Branch-and-Cut Il

To reduce the runtime and problem complexity, we
propose a second greedy B&C method, referred to as
GB&C-II. This method is similar to the E-B&C method,
except that we put an additional constraint on assets.
Once we enumerate all the possible departure times and
find the best assignment {j*} corresponding to each de-
parture time for an asset i, we fix the corresponding
schedule. That is, we reduce the complexity of search
with more than one asset from permutation ordering to
a linear ordering. The same process is then repeated un-
til all cases are fully allocated or there are no more as-
sets available. The pseudocode is shown in Algorithm 3.
Here, line 2 finds the best assignment for asset i found in
line 1. Line 3 updates the PoA surface and line 4 saves
the best assignment found in line 2.

ArLGoriTHM 3 Greedy Branch-and-Cut II (GB&C-IT)

l:foreachie{l,..., A} do

2: assign(i) = B&C(i)

3: updatePoA (assignment())

4: BestAssign < BestAssign + assign(i)
5: end for

CONTEXT-AWARE DYNAMIC ASSET ALLOCATION FOR MARITIME SURVEILLANCE OPERATIONS 9



D. Parallelized Greedy Branch-and-Cut Il

To further improve the computation time, we de-
velop a parallelized version of the GB&C-II algorithm.
Parallelization involves dividing a large problem into
multiple independent subproblems, where each sub-
problem is assigned to a processor. This substantially re-
duces the computation time and therefore can rapidly
generate allocation solutions. We use a master—slave
architecture for our parallelization with the following
functionalities:

Master process

® Pools subproblems for the slave processors to run.
® Spawns the subproblems on multiple slave processors.
e Collects the results from the slave processors.

Slave process

® Receives the subproblem from the master processor.
e Executes the subproblem.
e Returns the solution to the master processor.

The serial GB&C-II algorithm, executed on a sin-
gle processor, searches the B&C tree by expanding live
nodes one at a time. In order to parallelize this prob-
lem on M processors, we set each t;; to each processor
and let each processor execute the subproblem. All pro-
cesses share the same memory for the PoA and other
read-only data. Lastly, the master processor collects all
value returns from the slave processors to evaluate the
best assignment for asset i.

E. Approximate Dynamic Programming

Another approach to solve the problem is via ADP,
more specifically, a one-step lookahead rollout algo-
rithm. Note that the following formulation is for a single
arbitrary asset i and is thus assumed given throughout.
Let ji be the asset—case assignment at time epoch k and
Zx be the remaining aloft time for an asset at time epoch
k. We have the state equation for z;1 as

Zeet = f(2ks Ji), (24)
where jj is the state-based control variable that selects
a case j at time epoch k as

Jk = (ks Je-1) Jk=01,....,C. (25)
Here, zx = L; and j; = 0 implies that there is no asset—
case assignment made and the asset is in the rest state at
time epoch k. When zx < L;and jy =1, ..., C,an asset—
case assignment has been made at time epoch k — 1 and
the asset is currently in a flight state. The detailed control
options are described in this section later (see (31) and

(32)).

The ADP equation for the problem is defined as
follows:

gz ) =y (1= JT (1=wiu) |

kesjklzk

(26)

Je(jx) = m],?XE {82k ji) + Tirr (F(zks s A(K)))}

27)
where s, is the set of remaining search time indices avail-
able within the current sortie for asset i assigned to case
jand A(k) is a function that indicates that the asset is
currently flying its £th flight at time k. The variable A;
is the normalized priority weight for case j. Here, Ji41
is the heuristic cost-to-go and is estimated based on the
following assumptions:

H1: The asset will fly out for its maximum aloft time.

H2: Each asset will stay on just one case for each
flight.

H3: Each asset will fly out immediately after it is fully
rested.

H4: The case with the highest total reward will be
selected for the £th flight interval, as in (28):

j*:argm]ax)\j 1-— H (1 —wij) | » (28)

key(i,),0)

where y (i, j, £) is the set of search time indices for asset
i assigned to case j for the ¢th flight. If the planning time
horizon allows multiple flights, then we first compute the
best case for the next flight time defined by H1 to H3
using (28). The future cost-to-go for the ¢th flight is as
follows:

H(L) = Ajs

T

key (i, j*.€)

(1 — wij*k) s (29)

where j* is computed from (28). The heuristic cost-to-go
given the current flight at time k is A (k) and is given by

[K/(Li+Ri)]

2

n=A(k)+1

Jis1 (f 2y Jis k) = H(n). (30)

As mentioned earlier, the control variable jj is state-
dependent. When an asset is at rest state at time k, the
control variable j;, comprises the actions of launching
the asset or not with the intent of obtaining better re-
ward at a later time epoch. That is,

do not launch the asset,

launch the asset.

. 0’
K= p=1....cC
(31)

A comparison of expected reward between launching
the asset at the current hour versus the next hour is
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Fig.5. Illustration of rollout for deciding when to fly with the traveling time (green) and search time (blue).

performed using rollout with the heuristic defined ear-
lier. If launching the asset during the current time epoch
results in a higher reward, then the asset will be assigned
to the case with the highest total reward r; in (28) and
assigned for the first search hour to the selected case. If
launching the asset during the next time epoch results
in a higher reward, then we simply increment the time
epoch and repeat the process. Fig. 5 illustrates this roll-
out heuristic for determining the expected reward for
launching at a different hour.

When the asset is in flight, for the second through final
hour of the search, the control variable ji takes on a dif-
ferent set of values, detailed as follows:

Jh—1, stay on the current case,

switch to a different case with
the cost of additional travel time.

=7 # ket

(32)
We illustrate the computation of the heuristic for the
one-step lookahead rollout in Fig. 6. The first example
illustrates the situation when the surveillance asset is
searching for case j and chooses to stay on case j for
the remaining search interval. The second example illus-
trates the situation, wherein the asset currently search-
ing for case j switches to a new case j # j, while
considering the cost of additional travel time from case
j to case j. The travel time between the new case j
to the asset’s home base is then the new return travel
time for the asset. The optimal control action is selected
based on the maximum expected reward, as in (27).
This process is repeated for each time epoch k to ob-
tain a feasible asset—case assignment over the planning
horizon.

F. Multistep Lookahead Approximate Dynamic
Programming |

We propose two multistep lookahead ADP strate-
gies to obtain near-optimal assignments for all assets.
The first method begins with an m-length permutation
of the asset order for which to start the allocation. That
is,m = 1 corresponds to searching over each asset;m = 2
corresponds to searching over all possible pairs of as-
sets; and so on. The PoA is then updated with respect
to each asset—case—time assignment to ensure that there
are no duplicate asset—case—time tuples. The difference
between the two methods lies in how the remaining as-
sets are allocated. In the first proposed method, we ex-
haustively compute the feasible asset assignment for all
the available assets and fix the allocation corresponding
to the asset with the highest ;. The PoA is then updated
and the process is then repeated until either no more as-
sets are available or all cases are fully allocated. Once
all the assets are allocated, we reset the PoA surface to
its original state and repeat the process from the begin-
ning with the next possible m-length subset of assets to
start the initial asset assignment over the time horizon.
We refer to this method as mSLADP-I1. The pseudocode
is shown in Algorithm 4. In Algorithm 4’s pseudocode,
line 1 generates the m-length permutation of asset or-
der, where m specifies the size of the subset permutation
to be used for the initial asset allocation. Lines 4-7 find
the best allocation given each asset i in a specific asset
order from line 1 and update the PoA surface, accord-
ingly. Then, lines 12-18 compute the best assignment for
the remaining unassigned assets. Line 12 finds the best
assignment for each unassigned asset and line 17 selects
the best asset i* for allocation. The PoA surface is sub-
sequently updated in line 18. Lines 20-24 save the com-
plete assignment and reset the parameters for the next
asset permutation sequence generated in line 1.

Time (Hours from Scenario Start)

1]2[3]4]5]6]7][8]9]10]11]12]13[14]15]16[17]18[19]20[21]22]23]24]25[26]27]28]29]30[31]32]33[34]35[36

o [

o I

Fig. 6.

Tllustration of one-step lookahead. 1) Stay at current case; 2) switch to a different case with the cost of additional traveling time; and 3)

return to the asset’s base.
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ALGORITHM 4 mSLADP-I

1: PermSeq = Perm({1, ..., A}, m) > m-length
permutation of asset order, where m specifies the size
of the subset permutation to be used for initial asset
allocation

2: for each AssetSeq in PermSeq do

3: for eachi € AssetSeq do

4 assign(i) = ADP()

5:  BestAssign < BestAssign + assign(i)

6:  updatePoA (assign(i))

7 AssignedAsset < AssignedAsset + i

8: end for

while length(AssignedAsset) < A do

10: foreachic {1,..., A} do

11: if i ¢ AssignedAsset then

2 %0

12: assignTemp(i) = ADP(i)
13: end if
14:  end for

15:  b_assign(i*) = MaxReward(assignTemp) >
Given the previous allocations, select the asset
assignment with the highest ; among the
remaining available assets

16:  AssignedAsset < AssignedAsset + i*

17:  BestAssign < BestAssign + b_assign(i*)

18:  updatePoA (assignment(i*))

19:  end while

20: Potential Assign < Potential Assign + BestAssign

21: assign=1¢

22:  AssignedAsset = ¢

23: BestAssign = ()

24: resetPoA

25: end for

26: BestAssign = MaxReward(Potential Assign)

G. Multistep Lookahead Approximate Dynamic
Programming II

The second multistep lookahead method (referred to
as mSLADP-II), as in the first method, begins with an
m-length permutation of asset ordering. The difference
between mSLADP-I and mSLADP-II is how the algo-
rithm computes the asset allocation for the remaining
assets. In mSLADP-II, we iteratively compute the best
asset allocation for each i. Once the best assignment is
found for asset i, we immediately fix the corresponding
schedule and update the PoA surface. There is no addi-
tional loop to find the best asset—case assignment among
all the remaining assets. Hence, mSLADP-I1 is faster and
less complex than mSLADP-I. The same process is then
repeated until all cases are fully allocated or there are
no more assets available. The pseudocode is shown in
Algorithm 5. In this pseudocode, lines 1-7 remain the
same as Algorithm 4. The difference lies in lines 10-17,
where, for each unassigned asset, we find the best assign-
ment corresponding to an asset i* and update the PoA

surface accordingly. Once all assets are assigned, we re-
set all the parameters for the next asset permutation se-
quence generated from line 1.

ALGORITHM 5 mSLADP-II

1: PermSeq = Perm({1, ..., A}, m)

2: for each AssetSeq in PermSeq do

for each i € AssetSeq do
assign(i) = ADP(i)
BestAssign < BestAssign + assign(i)
updatePoA (assign(i))
AssignedAsset < AssignedAsset + i

end for

9: foreachic{l,.,A}do

10:  ifi ¢ AssignedAsset then

w

A

11: assign(i) = ADP(i)
12: end if
13: end for

14:  AssignedAsset <— AssignedAsset + i*

15: BestAssign < BestAssign + assign(i)

16: updatePoA (assignment(i*))

17: Potential Assign < PotentialAssign + BestAssign
18: assign =0

19: AssignedAsset = ¢

20: BestAssign =

21: resetPoA

22: end for

23: BestAssign = MaxReward(Potential Assign)

IV. SIMULATION AND COMPUTATIONAL RESULTS

The proposed algorithms were implemented in
Python 2.7 on an Intel® Core™ i7-6600U CPU @
2.60 GHz x 4 with 32 GB RAM. Our computational
results are organized as follows: We first describe the
mission scenario. Then, we discuss the solution quality
of various algorithms with respect to objectives O1-O3
and their runtimes. Additionally, we conduct scalability
analyses of the algorithms by varying the number of as-
sets and cases, as well as robustness of the various algo-
rithms using a signal-to-noise ratio (SNR) metric from
robust design [37].

A. Scenario Description(s)

There are two main areas of operation in the simu-
lated scenario: the East Pacific Ocean and the Caribbean
Sea. The PoA surfaces corresponding to this area of re-
sponsibility (AOR) were partitioned into a grid of 90 x
138 cells, where each cell is a square with a side length
of 30 nautical miles. The total area of the AOR was ~11
million square nautical miles. The lower left corner of the
rectangular AOR had a latitude and longitude of 10°S
and 110°W, respectively.
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TABLE II
Smuggler Cases

Case Case ID Vessel type Speed (kts) Payload (kg) No. of smugglers

1 GF1 Go fast 30 1000 3
2 PG1 Panga 20 450 2
3 GF2 Go fast 30 1000 3
4 PG2 Panga 20 450 2
5 PG3 Panga 20 450 2
6 PG4 Panga 20 450 2
7 SP1 SPSS? 8 2500 3
8 FSVI  FSV? 4 5000 2
9 PGS Panga 20 450 2
10 PG6 Panga 20 450 2

“Self-propelled semi-submersible.
bFully submerged vessel.

The PoA surfaces forecasted 10 smuggler cases, of
which 5 were located in the East Pacific Ocean and the
remaining 5 were located in the Caribbean Sea. The de-
tails for each case can be found in Table II and Fig. 7.
These cases are generated based on Navy intelligence,
which typically comprises estimates of the expected
number of smugglers on board and the size of the con-
traband shipment. Often there are few “active” cases, i.e.,
cases that targeteers deem to have sufficient actionable
intelligence to allocate assets to. We assume the PoA sur-
faces reflect the spatiotemporal probabilities pertaining
to such “active” cases. Four different types of smuggler
vessels were considered: 1) Go fast—small, fast boats ca-
pable of reaching high speeds; 2) Panga—modest-sized,
fast boats that are easy to build by the smugglers; 3) self-
propelled semi-submersible (SPSS)—narco-submarines
capable of shifting heavy loads long distances while al-
most submerged under the ocean’s surface [38]; and 4)
fully submerged vessel —makeshift submarine-like ves-
sels that can remain submerged with large quantities
of cocaine aboard. Each case had a unique departure,
destination, and waypoint combination. Waypoints are
defined as possible areas in the ocean where the cargo
is transferred to another vessel or a change in trajec-
tory of the smuggler is predicted. Additionally, each case
also had an associated payload measured in kg of co-
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Fig.7 Experiment scenario.
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Fig.8. Chart displaying when each smuggler case is active over the
72 h time horizon. Cases are active up through time K = 72 and do
not necessarily end at that time, but rather, due to the time horizon of
the forecast data, are truncated.

caine. This is relevant when we run the algorithm with
objective O2. An important fact to note is that each
case had different start and end times. Fig. 8 details the
time epochs when each smuggler case is deemed active.
Cases with high uncertainty had wide bands of PoA. The
amount of uncertainty is dependent on the type of smug-
gler vessel (e.g., SPSSs can be extremely difficult to de-
tect, and thus the corresponding PoA surfaces reflect
this in long and broad bands of probability reflecting
spatial and temporal uncertainty) and/or departure time
uncertainty.

In the scenario, 10 P-3 surveillance assets were con-
sidered as available for allocation during the planning
horizon. The home bases of individual surveillance as-
sets are detailed in Table I11. Each asset carries two dif-
ferent types of sensors with performance parameters de-
tailed in Table IV.

We simulated the scenario with a granularity of
1 h (i.e., the forecasted surfaces were for each hour,
on the hour; thus A = 1 h). The forecasts extended to
72 h out from the current time (i.e., K = 72) and an as-
set allocation solution (e.g., x;jx = 0 or 1) was required
for each time epoch, k, in order for the algorithm to
terminate.

Note that we omit E-B&C for large-sized scenarios
in our results due to an exponential increase in com-
putation times. Therefore, for E-B&C, we compute the
solution for scenarios involving only up to 5 assets and
10 cases.

TABLE III
Asset Home Base Location (Longitude, Latitude)

1.6 (—69.7617,18.5036)
2,7 (—79.3833,9.07111)
3,8 (—85.5442,10.5931)
4,9 (—89.0558, 13.4406)
5,10 (—92.37,14.7942)
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TABLE IV
Sensor-to-Target Sweep Width (nm)

Sensor type  FSV¢ SPSS? FV¢ Panga GF? MV¢ SV/ UNKS

APS 115 5 75 75 9 75 75 15 2.5
APS 137 10 15 15 18 15 15 15 5

“Fully submerged vessel.
bSelf-propelled semi-submersible.
Fishing vessel.

4Go fast.

“Merchant vessel.

/Supply vessel.

8Unknown (other).

B. Solution Quality with Different Objective Functions

Using the aforementioned values for the parame-
ters, we ran the simulation for all the approaches to
schedule the 10 specified assets over the 72 h plan-
ning horizon. Tables V-VII show the CPoSD for the
GB&C-IT method for objectives O1, O2, and O3, re-
spectively. Parallel GB&C-II has the same result as the
sequential GB&C-II. Therefore, we omit the parallel
GB&C-II from the quality comparison.

We refer to Tables V-VII as COA matrices [5]. The
COA matrices aid the DM in understanding the reason-
ing behind the algorithm’s behavior and its output by
giving metrics for both individual asset—case pairs and,
overall, the probability an asset detects at least one case
(PDC) and the probability that a case is detected by at
least one asset (PDA). These matrices may be generated
to assess the allocation performance at a particular time
epoch, or, as shown in Tables V-VII, the cumulative as-
set allocation performance up to that point in time (in
Tables V-VII, through K = 72).

Solving with respect to objective O1 (Table V) re-
sulted in an asset allocation with the highest expected
weight of contraband detected, totaling 7828 kg of co-
caine compared to objectives O2 and O3 (Tables VI and

VII). This implies that we have a 64% success rate of de-
tecting the transport of contraband with respect to the
total possible for the experimental scenario of 12,200 kg
of contraband. The asset allocations with respect to ob-
jective O1 have 15.5% and 10.1% more contraband dis-
rupted when compared to objectives O2 and O3, respec-
tively. In Table V, case 8 has the most amount of con-
traband (5000 kg) with a CPoSD = 0.95. Solving with
respect to objective O3 resulted in the detection of a
higher expected weight of contraband (5.9%), expected
number of detections (6.8%), and expected number of
smugglers (7.5%) compared to objective O2. This could
be caused by the uniform priority weight vector used in
objective O2.

For the sake of compactness, we omit the COA ma-
trices used in demonstrating the performance of the
other approaches implemented and, instead, quantify
the goodness of the allocation by comparing the algo-
rithms with that of GB&C-II algorithm as measured
by the expected weight of the contraband detected, ex-
pected number of detections, and expected number of
smugglers detected.

The sums of the totals for each objective for each
algorithm are shown in Table VIII. Fig. 9 shows a
normalized representation of the results detailed in
Table VIII, where the largest possible number of detec-
tions and contraband detected was utilized as a basis
for normalization of both metrics, respectively, to com-
pare the expected number of detections and contraband
weight detected. Note that Fig. 9 only contains the results
for 1ISLADP-I and 1SLADP-II; the detailed solutions of
mSLADP with m > 1 are shown later in Section IV-C.

We illustrate in Table VIII and Fig. 9 that all B&C-
based algorithms optimizing objective O2 are outper-
formed by the same algorithms optimizing objective O3
in terms of both the expected number of detections
and expected number of smugglers. When comparing
GB&C-I and GB&C-II, optimizing with respect to ob-
jective O2 resulted in 4% less expected number of detec-

TABLE V
Objective O1: Maximize Weight of Contraband Detected

Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC
1 - - - - - - - 0.76 - - 0.76
2 - - - - - - 0.43 0.29 - - 0.60
3 0.09 - - - - - 0.25 0.29 - - 052
4 0.15 - - - - 0.28 - - - 0.14 0.47
5 0.21 0.14 - - - - - - - - 0.33
6 - - - - - - - 0.61 - - 0.61
7 - - - - - - 0.40 - - - 0.40
8 - - 0.09 — - - 0.21 - - - 0.28
9 0.17 - - - - 0.30 - - - - 0.42
10 - - - 0.20 - 0.11 - - - 0.06 0.33

PDA 0.49 0.14 0.09 0.20 - 0.55 0.80 0.95 - 0.19 abe

“Expected weight of contraband disrupted: 7828 kg.
bExpected number of detections: 3.41.

¢Expected number of smugglers: 8.21.
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TABLE VI

Objective O2: Maximize Number of Detections

Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC
1 - - - - - - - 0.76 - - 0.76
2 - 0.27 - - - 0.38 - - - 0.15 0.61
3 0.20 - - - - - 0.28 - - - 043
4 0.15 - - - - - - 0.10 - 0.15 0.35
5 0.19 - - 0.17 - - - - - - 0.33
6 - - - 0.13 - - - - - 0.20 0.31
7 - 0.29 - - - - - 0.37 - - 0.55
8 0.13 - - - - - - - 0.23 - 0.33
9 - - 0.10 - 0.18 - - - - - 0.25
10 0.17 - - - - - - - - 0.05 0.21
PDA 0.61 0.48 0.10 0.28 0.18 0.38 0.28 0.86 0.23 0.46 abe
“Expected weight of contraband detected: 6619 kg.
bExpected number of detections: 3.85.
“Expected number of smugglers: 8.67.
TABLE VII
Objective O3: Maximize Number of Smugglers Detected
Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC
1 - - - - - 0.21 - 0.61 - - 0.69
2 - - - - - 0.34 0.26 - 0.15 0.59
3 0.09 0.23 - - - - 0.25 - - - 0.48
4 0.11 - - 0.21 - - 0.10 - - 0.37
5 0.18 - 0.10 - - - - - - - 0.25
6 - - - - - - - 0.58 0.15 0.64
7 - 0.27 - - - - - - - 0.11 0.35
8 - - - - 0.18 - - - 0.22 - 0.36
9 0.16 - - - - 0.30 - - - - 0.41
10 - - 0.09 0.16 - - - - - - 0.23
PDA 0.44 0.44 0.17 0.34 0.18 0.63 0.51 0.84 0.22 0.35 abe

“Expected weight of contraband detected: 7036 kg.
bExpected number of detections: 4.13.

¢Expected number of smugglers: 9.37.

tions and 1.2% less expected number of smugglers than
when optimizing with respect to objective O3.

In terms of the amount of contraband detected, us-
ing the GB&C-I algorithm resulted in an allocation that
obtained the highest expected amount of contraband de-

TABLE VIII
Algorithm comparison

tected when solving for objective O1; however, its solu-

tions for maximizing the expected number of detections

Contraband disrupted (kg)

Objective
o1
02
03

Objective
o1
02
03

Objective
o1
02
03

GB&C-1 GB&C-1I 1SLADP-1
7869 7828 7520
6658 6619 7185
7188 7036 7594

No. of detections

GB&C-1 GB&C-11 1SLADP-1
3.47 341 3.57
3.87 3.84 3.72
4.12 413 3.80

No. of smugglers

GB&C-1 GB&C-11 1SLADP-1
8.35 8.21 8.37
8.56 8.67 8.40
9.50 9.37 8.70

1SLADP-1I
7821
7610
7591

1SLADP-II

3.68
4.08

1SLADP-II
8.72

9.12

1 Q!
- Ole o1 o2
.io:’b . A °®
g :03 o1 O3 03
8 02+ 03¢
2 o 091 o
g4 s
a.2 02
& 8 020*
o g
S £ 0.8H¢GB&CI
E“ S 0 GB&C-II
5 5 2+ 1SLADP-I
Z ¢ 1ISLADP-II
4.04 0.7 : ‘ ‘
0.7 0.8 0.9 1
Normalized Expected # of Detections

or expected number of smugglers were inferior to the
ADP-based algorithms. In general, we see that the B&C-
based methods are able to obtain more contraband when

Fig.9. A normalized view comparing the performance of all the
algorithms, with respect to the expected weight of contraband

expected number of smugglers (O3).
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Fig.10. The expected weight of contraband disrupted for each
algorithm by varying the number of available assets.

solving with respect to objective O1, while the ADP-
based methods are able to get better solutions for the
expected number of detections and expected number of
smugglers when solving with respect to objectives O2
and O3 with the exception of ISLADP-I for objective
O3.

C. Scalability: Available Asset Sensitivity

In this section, we use objective O1 for the scalabil-
ity studies with respect to the number of assets. To mea-
sure the scalability, we limited the number of assets avail-
able for allocation for the scenario from 1 to 10 aircraft.
Figs. 10 and 11 show the expected weight of contra-
band disrupted and the runtimes, respectively. The de-
tailed values are given in Tables IX and X. In Fig.
10 and Table IX, we see that ADP-based algorithms

103
102
=
) 1
E 10
H
100
107t

1 2 3 4 5 6 7 8 9 10
Total # of Assets

—— E-B&C

—— GB&C-1
—— GB&C-II
—m— Parallel GB&C-II
——  1SLADP-I
—e—  1SLADP-II
—e—  2SLADP-I
——  2SLADP-II

Fig.11. The CPU runtimes for each algorithm by varying the
number of available assets.

(1SLADP-1, 1ISLADP-II, 2SLADP-I, and 2SLADP-II)
are able to obtain similar amounts of contraband
disrupted, differing by only up to 339.7 kg (4.6%)
of contraband.

Similarly, the B&C-based algorithms (E-B&C,
GB&C-1I, and GB&C-II) are able to obtain similar
amounts of contraband disrupted, differing by only
up to 279.1 kg of contraband among the three. E-B&C,
intuitively, outperformed the other B&C variations (and
all other algorithms for that matter) among the scenar-
ios simulated until runtime became an issue. GB&C-I1
is able to obtain a better result compared to GB&C-I
when there are two, six, or seven assets available for
allocation. This is due to the nature of the scenario or
the characteristics of the smuggler cases. Since GB&C-1
iterates through all available assets, there is a tendency
that closer (with respect to assets’ home base) cases

TABLE IX
Expected Weight of Contraband Disrupted (kg) for Varying Asset Availability

No. of assets E-B&C GB&C-1 GB&C-11 1SLADP-I 1SLADP-II 2SLADP-1 2SLADP-II
1 3806 3806 3806 3806 3806 3806 3806
2 5240 4747 5240 4747 4747 4747 4747
3 5997 5997 5935 5952 5988 5988 5988
4 6436 6349 6253 6306 6341 6341 6341
5 6762 6617 6483 6583 6658 6658 6693
6 - 6816 6847 6748 6823 6823 6858
7 - 7239 7265 6983 7298 7292 7323
8 - 7501 7490 7195 7494 7396 7519
9 - 7734 7691 7369 7648 7535 7673

10 - 7869 7828 7520 7821 7648 7846
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TABLE X
Simulation Runtime (s) for Varying Asset Availability

No. of assets E-B&C GB&C-1 GB&C-11 Parallel GB&C-II 1SLADP-I 1SLADP-II 2SLADP-1 2SLADP-II
1 323 3.70 3.48 1.86 0.08 0.08 0.09 0.08
2 15.1 10.9 754 4.49 0.18 0.18 0.16 0.17
3 69.6 22.8 11.8 6.75 0.38 0.26 0.30 0.29
4 418 45.7 16.7 9.82 0.53 0.36 0.51 0.47
5 2639 75.9 21.9 12.5 0.55 0.43 0.92 0.71
6 - 89.4 23.0 13.9 0.94 0.53 1.58 1.03
7 - 111 25.5 15.1 1.46 0.66 291 162
8 - 139 30.3 16.4 1.35 0.83 491 222
9 - 181 31.0 18.32 173 0.93 775 2.90
10 - 220 34.7 20.9 222 0.99 13.0 5.50

are allocated first, since there is less travel time and,
hence, are more rewarding. In turn, this may limit the
options available to assets considered for allocation in
later iterations since cases, previously in close proxim-
ity to their home base, may already be allocated and,
due to longer travel time, will be much less rewarding
or not at all. Similar problems arose with 1ISLADP-I
algorithm, which obtains less expected contraband
disrupted compared to 1SLADP-II algorithm when
there are more than six assets available for allocation,
differing by up to 314.9 kg of contraband. We are able
to minimize the effect of this problem by applying a
two-step lookahead strategy. 2SLADP-I algorithm ob-
tains less expected contraband disrupted compared to
2SLADP-II algorithm when there are more than five as-
sets available for allocation, differing by up to 1976 kg of
contraband.

As Fig. 11 and Table X show, E-B&C has the slow-
est runtime. There is a maximum speedup of 34.8, 120.6,
210.6,4794,6146,2861,and 3711 and an average speedup
of 9.8, 30.9, 53.7 1177, 1542, 809, and 994 when com-
paring the runtimes of GB&C-I to GB&C-II, parallel
GB&C-11, 1SLADP-1I, 1SLADP-II, 2SLADP-I, and
2SLADP-II, respectively. Over all the asset availability
scenarios tested, the average speedups of GB&C-II, par-
allel GB&C-11, 1SLADP-1, 1ISLADP-II, 2SLADP-I, and
2SLADP-II are 3.6, 6.1, 87,143, 52, and 72 times, respec-
tively, faster compared to GB&C-1.

Our key finding here is that, with a 1.6% sacrifice
in optimality on average, GB&C-II provides a solution
nearly identical to that of E-B&C, while offering a solu-
tion in a fraction of the time (up to nearly 210.6 times
faster among the simulated results). Alternatively, at a
cost of 2.5% suboptimality on average, but more than
6146 times faster speedup, we can run 1SLADP-II for a
given scenario. Similarly, at a cost of 2.4% suboptimal-
ity on average, 2SLADP-II offers more than 3711 times
faster speedup.

In general, GB&C-II should be used when the total
number of assets is less than 3 due to its minimal sac-
rifice in optimality (on average 1.6%). When the num-
ber of assets is greater than 3, 2SLADP-II should be
used.

D. Scalability: Varying the Number of Cases

Here, we vary the number of cases from 1 to 10, while
fixing the number of available assets to 10. Figs. 12 and
13 show the expected weight of contraband disrupted
and the runtimes, respectively. The detailed values for
each figure are given in Tables XI and XII, respectively.
From Fig. 12 and Table XI, we see that all the algorithms
have very similar solution quality. We see a noticeable
increase in contraband disruption for case 8 (5000 kg of
contraband). All algorithms obtained a similar amount
of expected contraband disrupted.

Fig. 13 and Table XII show the runtimes. As expected,
GB&C-I has the slowest runtimes, while the 1ISLADP-
II algorithm has the fastest runtime (<1 s). There are
maximum speedups of 7, 11, 99, 221, 17, and 40 when
comparing the runtimes of GB&C-I to GB&C-II, par-
allel GB&C-11, 1SLADP-1, 1ISLADP-II, 2SLADP-I, and

8,000

6,000

4,000

2,000

Expected Weight of Contraband Disrupted (kg)

Total # of Cases

—— GB&C-I
—— GB&C-II
—— 1SLADP-I
—eo— 1SLADP-II
—e— 2SLADP-I
——2SLADP-II

Fig. 12. The expected weight of contraband disrupted for each
algorithm by varying the number of available cases.
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TABLE XI
Expected Weight of Contraband Disrupted (kg) for Varying Case Availability

No. of cases GB&C-1 GB&C-11 1SLADP-I 1SLADP-II 2SLADP-1 2SLADP-II
1 653.2 558.7 653.2 629.6 6577 653.2
2 1000 775.8 968.7 999.4 1037 999.4
3 1332 1189 1302 1334 1355 1359
4 1459 1425 1462 1479 1471 1504
5 1540 1452 1474 1549 1537 1610
6 1680 1633 1707 1655 1727 1685
7 3145 3090 3049 3133 3125 3188
8 7725 7694 7311 7648 7665 7716
9 7725 7694 7320 7633 7612 7754
10 7869 7828 7520 7821 7648 7846
TABLE XII

Simulation Runtime (s) for Varying Case Availability

No. of cases GB&C-1 GB&C-11 Parallel GB&C-I1 1SLADP-1 1SLADP-II 2SLADP-1 2SLADP-II
1 0.85 0.34 1.08 0.68 0.23 1.99 0.86
2 4.09 1.36 4.47 0.66 0.32 3.74 1.27
3 5.88 2.67 1.89 0.85 0.42 413 1.58
4 11.8 3.93 3.06 1.00 0.54 5.24 1.91
5 18.0 4.77 4.01 1.48 0.57 5.51 2.16
6 24.7 748 5.31 134 0.64 6.95 2.38
7 56.0 11.7 727 1.45 0.72 779 2.55
8 108 13.2 8.56 1.67 0.80 9.45 3.13
9 183 15.9 9.85 1.92 0.89 11.9 4.00
10 220 34.7 20.9 222 0.99 13.0 5.50

2SLADP-II, respectively. On average, the speedups of II,2SLADP-I,and 2SLADP-II algorithms were 4.3, 6,33,
the GB&C-II, parallel GB&C-II, 1ISLADP-I, ISLADP-

10%
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£
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Total # of Cases

—— GB&C-1
—— GB&C-I1
—m— Parallel GB&C-II
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1SLADP-II
2SLADP-I
——  2SLADP-II

—o—
—e

Fig. 13. The CPU runtimes for each algorithm by varying the

number of available cases.

71.8,6,and 16.5 times, respectively.

The key point here is that the algorithm 2SLADP-I
is very efficient and is recommended for scenarios when
the number of cases is less than or equal to the number
of assets, which is often the case.

E. Robustness: Monte Carlo Evaluation of Asset
Allocation Strategies

To test the robustness of each asset allocation algo-
rithm, we simulated 100,000 trajectories of smugglers
(10,000 from each case) behaving as in our benchmark
scenario. Sampling from the PoA surfaces, we obtained
waypoints for each smuggler at each time epoch and
joined them together to obtain a full path. From these
paths, we measured whether the smuggler traversed
through any allocated patrol boxes during the allocated
search time, and if so, what was the aircraft’s probabil-
ity of detecting the target during those time epoch(s).
Table XIII shows the detailed performance statistics for
each algorithm over the 100,000 Monte Carlo simula-
tions. A useful metric to measure an algorithm’s good-
ness is that of nominal-the-best SNR [37], that is,

2
SNR = 10log;; —. (33)
o
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TABLE XIII
Monte Carlo Analysis (from 100,000 Runs)

Objective Mean of contraband detected (i) in kg Standard deviation of contraband detected (o) in kg SNR (dB)

GB&C-1 7616 246.3 29.8
GB&C-II 7632 2525 29.6
1SLADP-I 7645 2442 29.9
1SLADP-II 7610 218.4 30.8
2SLADP-1 7648 240.3 30.1
2SLADP-II 7612 203.3 315

Nominal-the-best SNR is a useful measure when the
goal is to maximize a mean and minimize the variation.
Note that maximization of this metric seeks to minimize
the coefficient of variation (=standard deviation/mean)
and is thus a measure of robustness of a solution. From
the results of 100,000 Monte Carlo runs, we found that
the algorithm 2SLADP-II performs the best with re-
spect to objective O1, when measured using the SNR.
The 2SLADP-II algorithm obtained, on average, 7612 kg
of contraband (out of a total of 12,200 kg purportedly
transported).

As Table XIII shows, all algorithms were able to
obtain a similar expected amount of contraband, with
2SLADP-II proving to be the most robust, as measured
in terms of nominal-the-best SNR.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed five asset alloca-
tion algorithms to the maritime surveillance problem:
1) E-B&C: enumerate all possible asset—case combi-
nations over all times and find the optimal allocation.
2) GB&C-I: enumerate and solve for the best alloca-
tion for each asset and compute the PoSD for each as-
set, and iteratively generate a schedule based on the
highest PoSD. 3) GB&C-II: similar to E-B&C, except
the algorithm directly enforces the asset schedule once
the best allocation is found. 4) mSLADP-I: utilize multi-
step lookahead rollout in a heuristic to iteratively sched-
ule asset—case assignments for individual time epochs. 5)
mSLADP-II:similar to mSLADP-I, except that the algo-
rithm directly enforces the asset schedule based on the
highest incremental reward.

We validated each algorithm and solved the NP-hard
counter-smuggling surveillance problem in a relatively
short amount of time for any of the three objectives
examined —maximizing the contraband disrupted, num-
ber of detections, or number of smugglers detected. We
found that B&C-based methods are able to obtain more
contraband when optimizing the amount of contraband
disrupted, while the approximate dynamic approaches
are better at optimizing over the number of smugglers
and the number of detections.

We conducted scalability and robustness analyses to
evaluate the solution quality, runtimes, and contraband
detection performance behavior of each algorithm.
We found that the algorithms scale reasonably well

with the problem size. We also found that ADP-based
approaches are able to obtain effective asset allocations
within seconds of computation time with a minimal
sacrifice in optimality, while proving to provide the
most robust solution as measured by the SNR metric.
Additionally, we found the 2SLLADP-II algorithm to be
the best when measuring with respect to nominal-the-
best SNR. Our future work includes further sensitivity
analyses with varying asset types, aloft times, number
of unavailable assets, and rest times, and spatiotempo-
ral variations in the PoA surface (e.g., scenario-based
asset allocation to handle uncertainty in PoA surfaces).
Additionally, higher fidelity simulations could easily
be analyzed for more accurate detection models and
other operational PoA surfaces (e.g., historical flow
surface and active cases). Future work also includes
the incorporation of unmanned aerial vehicles (UAVs),
either as in [39], where solely UAVs collaborate, or in a
mixed-initiative sense, an augmentation of our proposed
approach.
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